Greedy algorithm, arithmetic progressions, subset sums and divisibility

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrepancy of Sums of Three Arithmetic Progressions

The set system of all arithmetic progressions on [n] is known to have a discrepancy of order n1/4. We investigate the discrepancy for the set system S3 n formed by all sums of three arithmetic progressions on [n] and show that the discrepancy of S3 n is bounded below by Ω(n1/2). Thus S3 n is one of the few explicit examples of systems with polynomially many sets and a discrepancy this high.

متن کامل

Discrepancy of Sums of two Arithmetic Progressions

Estimating the discrepancy of the hypergraph of all arithmetic progressions in the set [N ] = {1, 2, . . . , N} was one of the famous open problems in combinatorial discrepancy theory for a long time. An extension of this classical hypergraph is the hypergraph of sums of k (k ≥ 1 fixed) arithmetic progressions. The hyperedges of this hypergraph are of the form A1 + A2 + . . . + Ak in [N ], wher...

متن کامل

Sums of Products of Congruence Classes and of Arithmetic Progressions

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a+im : i ∈ N0}. For positive integers a, b, c, d,m the sum of products set Rm(a)Rm(b)+Rm(c)Rm(d) consists of all integers of the form (a+im)(b+jm)+(c+km)(d+lm) for some i, j, k, l ∈ Z}. It is proved that if gcd(a, b, c, d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class R...

متن کامل

On Arithmetic Progressions in Sums of Sets of Integers

3 Proof of Theorem 1 9 3.1 Estimation of the g1 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Estimation of the g3 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Estimation of the g2 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Putting everything together. . . . . . . . . . . . . . . . . . . . . ....

متن کامل

On Equal Values of Power Sums of Arithmetic Progressions

In this paper, we consider the Diophantine equation b + (a+ b) + · · ·+ (a (x− 1) + b) = = d + (c+ d) + · · ·+ (c (y − 1) + d) , where a, b, c, d, k, l are given integers with gcd(a, b) = gcd(c, d) = 1, k 6= l. We prove that, under some reasonable assumptions, the above equation has only finitely many solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1999

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(98)00385-9